Int. J. Multiphase Flow. Vol. 4. pp. 1-17. Pergamon/Elsevier. 1978. Printed in Great Britain.

LOW REYNOLDS NUMBER MOTION OF TWO DROPS
SUBMERGED IN AN UNBOUNDED ARBITRARY
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Abstract—The hydrodynamics of two droplets submerged in an unbounded arbitrary velocity field is
studied by solving Stokes’ equations for the flow fields in and around the droplets by means of the reflection
method. Solutions are obtained for the drag forces and the terminal settling velocities of two droplets
moving in an unbounded quiescent fluid in a gravitational field.

1. INTRODUCTION

The motion of two droplets submerged in an unbounded arbitrary velocity field is yet an
unsolved problem. Its significance lies in the fact that it is a necessary first step in solutions
relevant to emulsions.

In calculating the phenomenological properties of dilute emulsions, one is mainly concerned
with two properties: the velocity of the droplets in the emulsions and the rheological equation
of the emuision. The former is applicable to the equation of conservation of the volumetric
concentration, while the latter is applicable to the momentum equation (Batchelor 1972;
Batchelor & Green 1972b).

A second problem of interest is that of meteorological and cloud physics. It is well
established that cloud formation starts when water vapor condenses on micrometer size
particles to form small droplets, typically a few micrometers in diameter. These droplets then
coalesce to form drops a few hundred micrometers in diameter, which then proceed to grow,
eventually falling as rain. It is accepted that the principle mechanism of this coalescence is that of
collision. Therefore, one of the major problems is the computation of collision efficiencies. These
collision efficiencies can be obtained only when the problem of the motion of two unequal dropsina
quiescent unbounded velocity field is solved.

There exists substantial literature devoted mainly to rigid spheres moving in various
configurations, e.g. the motion of two rigid spheres along their line of centers (Stimson &
Jeffery 1926), the motion of a sphere towards a wall (Brenner 1961) and lately the solution for
two equal rigid spheres moving perpendicular to their line of centers (Goldman, Cox & Brenner
1966) and for two unequal spheres in the same configuration (O’Neill & Majumdar 1970).
Approximate solutions were obtained for the case of two rigid spheres suspended in shear flow
(Lin, Lee & Sather 1970; Batchelor & Green 1972a; Brenner & O’Neill 1972; and for touching
spheres by Nir & Acrivos 1973).

As for drops, an exact solution was obtained for two unequal drops moving along their line
of centers (Haber et al. 1974) which included the effect of different viscosities in the drips and
the solution for two touching drops.

The solution for two drops moving perpendicular to their line of centers has not previously
been obtained. An approximate solution is presented herein which uses the method of reflection
to calculate the flow fields in and around the droplets, the drag forces on the droplets, and their
terminal settling velocities.

The method of reflection is well described by Happel & Brenner (1965) for the solution of
two rigid spheres moving arbitrarily in an unbounded medium.
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2. STATEMENT OF THE PROBLEM

The problem considered herein is that of two liquid droplets moving arbitrarily in an
unbounded medium.

The fluids involved are assumed to be homogeneous, isothermal, Newtonian and of constant
densities. The unperturbed flow field v.. is Stokesian, but other than that is quite arbitrary.
Surface active agents are absent from the system.

Two spherical coordinate systems are used, i.e. R, ®, @, and r, 6, ¢, whose origins coincide
with the center of the droplets ‘a’ and ‘b’ (figure 1). The droplets are initially at a distance [
apart. The motion of the droplet is such that the two coordinate systems can be assumed to be
inertial, and the flow field is in quasi-steady-state.

1t is further assumed that the droplets are small and move with low relative velocity, such
that the inertia terms in the equations of motion can be neglected.

With these suppositions the equations of motion and continuity are as follows:

w. Vv ="9p,, [1a]
V.v=0, {1b]

where the subscript e indicates a property exterior to the droplet.
For the flow interior to droplet ‘a’

#aV’u="Vp, [2a)
V-ou=0. [2b]
For the interior of droplet ‘b’,
p,bVZU = VP,', [33.]
V-U=0. [3b]

Equations [1] to [3] are to be solved subject to the following boundary conditions:
Far from the droplets the flow field is unperturbed, i.e. at R =« and at r=

V=V (4]

On the interface of the droplets it is assumed that the velocities are continuous and the
normal stress vary by a term proportional to the surface tension, viz. at r=a

v =u*, [5a]
ot et =u,t, [5b]
- =1'*+0'<—1-—+-l—)t [5c]
(r) r) a Ral Raz r
at R=»b
yEE = UEE [6a)
U tg =U, " tp, [6b]
‘"(?)‘ = T;kl;; + U’b(—'l— + —1_‘>tR’ f6c]
Rbl sz

where an asterisk (*) indicates that the functions are to be evaluated at the interface r = a, and
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the double asterisk (**) indicate that the functions are to be evaluated at the interface R=b; v,
w, U, p,, pi, P, are the velocity vectors and pressures exterior to the droplet and interior to
droplet ‘a’ and ‘b, respectively; @, 7, and T, are the normal stress vectors based on the
velocities exterior to the droplets and interior to droplet ‘a’ and ‘b, respectively; o, and o, are
the respective surface tensions, while R,;, R,», and R, R, are the principal radii of the two
droplets; t, and tg are unit vectors normal to the interface of droplet ‘a’ and ‘b’, respectively.

3. THE SOLUTION

The solution of [I] to [3], subject to the boundary conditions [4] to [6] should yield,
simultaneously, the flow fields in and around the droplets, and the geometry of their interfaces.
It was shown previously (Hetsroni & Haber 1970; Hetsroni et al. 1970) that if the geometry of
the interface is assumed a priori, an inconsistency may result. On the other hand, the
simultaneous determination of the velocity fields and geometry is exceedingly difficult and is
not attempted here. Instead, an iterative procedure is adopted, similar to our previous works
(Hetsroni & Haber 1970; Hetsroni et al. 1970; Haber & Hetsroni 1971). The solution is thus
initiated by assuming that the droplets are spherical and solving the flow fields. Subsequently,
the geometry of the interface is solved for these flow fields. This new interface can be used for
solving new flow fields and the procedure can be continued until the desired accuracy is
reached. Here we perform only the first iteration, i.e. for spherical droplets, and the solution is
applicable only for

“—elv—“‘l«, (i=a,b)

a;

D=

where u, is the viscosity of the continuous field, v.. is a velocity scale, and o; is the surface
tension of droplet ‘a’ or droplet ‘b’. Therefore, we shall utilize only twelve out of the fourteen
available boundary conditions. The remaining boundary conditions can then be used for
calculating the geometry of the surface.

Since the Stokes’ equations of motion are linear, the following definitions are permissible,
and are convenient:

V=EVetVi+ Ve, Do = Pt pitpa; Ty = Tt T + T
u=u+u; Di =Pt Diz; Tin =Tt T(m2 [7]
U=U,+U; P;= P+ Py, Ty =Ty + Tiry2-

With these expressions, the boundary conditions [5] and [6] are rewritten as follows: at

r=0

v=0, [8a]

atr=a
vi+vi=uf, [8b]
uf-t,=U,-t, [8¢c]
A=t,t,) - (miye+ mo) = (I-t,8,) - 701, (8d]

at R=b
vi*=Ut%, [8e]
vi* tg =0, [8f]

(I—trtr) - @iy = (A —trte) - Tohy, [8g]
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for v, up, and U,, at r=o

v,=0, {9a)
at r=a
vi=uj, [9b]
uj-t, =0, [9c)
A-tt,) - mop= A-t,t,) Top, [9d}
at R=b
vER 4 vi* = Us*, 9e]
US* -t = U, - tg, [9f)
(1= trtg) - (Wirws+ M) = (1= trte) - Tiry. 9]

It is obvious from these boundary conditions that the solutions for v,, w;, and U, are
identical to the solutions of v,, u,, and U,, respectively. We therefore limit ourselves to the
solutions of vy, u;, and U,.

The solution is based on the method of reflection, which is described elsewhere (Happel &
Brenner 1965; Hetsroni & Haber 1970). It consists of a sum of velocity fields, all of which
satisfy [1] for the velocity field of the continuous medium, [2] for the velocity field interior to
droplet ‘a’, {3] for the interior of droplet ‘b’. Each of the solutions partially satisfies the
boundary conditions.

The reflected fields are

V|=ZV”, [103.]
i=1

u=> [10b)
i=1

U =>U, [10c]
i=1

where the second subscript under the summation indicates the number of the reflection.
The boundary conditions to be satisfied by the reflected fields are as follows:
The first reflection: at r=

v =0, [11a}
atr=a
vi+vi =ut,, [11b}
utf - t,=U, - t, [11c]
(M= t,8) - (a1l + i) = (A= 1,4) * 7001, (11d]
and in general
Wy = U1 =0, [12a]

and

Timax = Trnak-1 = 0. {12b]
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The 2kth reflection (k=1,2,3,...)at R=

V=0, [13a]

at R=b
Vigkt Visk-r = Uls, [13b)
Ul te=0, [13c]
(L~ tatr) - (i 2+ it 26-1) = (= trtr) TRy 2k [13d]

The (2k + 1)th reflection at r =

Vi =0, [14a)

atr=a
Ve v = 0¥ 2040, (14b]
¥ eyt t, =0, [14c]
A= tt,) - (mon kvt + T2 = (A= t4,) - Ty i, [14d]

Since all the reflected fields satisfy the Stokes’ equations of motion, we use Lamb’s general
solution for Stokesian flow fields as follows:

N-2

na = Z AT R+ Vot - R v R g+ R i) [15a]

N+3

L = = 1,2k + 1.2k 2 1.2ky _ 1 IZk}
Uin = 3 {7x Rt ™)+ ¥y SR EDan T VR - e Rov ), 1156

%©

Vizke = E {VX (ry 2530 + v Laks! - En—(z_)V(rzp'Zk”)+ rpl,f’i”} [15¢]

E3

_ 1,241 1,26+1 n+3 1241y _ 12k+1}
= 3 Vx5 490,12 s gzt L) g

n=1

The corresponding pressure fields:

P! = e 3 P, [16a]
p = Zop'ikt ! [16b]
P =y D ' [16¢]
N=1
12k+| i |2k+l []6d]
where x1257', p13ET, @1, A 2R, plRK,, @1, are solid spherical harmonics of degree
—n=1and (=N = 1); x," " p," 2,1 2, pa! 2, @41, are solid spherical harmonics

of degree n and N. It is more convenient to evaluate the spherical harmonics by first
transforming the boundary conditions (Hetsroni & Haber 1970) as follows:
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(Viag + vy )** 'tR:UT_;‘k‘tkzoq [17a]

ARy 2k JUR L2k~ 1>** ~( aURl.2k>**
(R R, p IR - (R=az) [17b]
[R-V X (vig + vige-)l** = [R -V XU, 5, 14, [17¢]
[R-V X (1R + 7y ak-0V* = [R: VX Tigyr 2 ]**. [17d]
{R- VX [tg X (mRy2e + Truae-DIF* = {R -V X [tg X Ty i 1F*, [17¢]

and
(Vs tvia)¥ =0 g o 1, =0, (18a]
r 2041 3Ur|.2k>* _ ( 3ur|.2k+l)*

(r ar " Tar " ’ (18b)
r VX (vt Vo) =0 VX ] [18c]
fr- VX (mepakn + w2 =1 VX 70000005, (18d]
{r- VX[t X (maa + w2l ={r- VXt X 70 000 11 [18e]

The solution is now continued by defining the solid spherical harmonies as follows:

' ¥ =(=1Np~NRN 20 Ci\Zycos M + CNX sin M1PM(cos ©), [19a]
b = (= 1)V NHIRN Mzo [B&% cos M® + Bl sin Mg Py"(cos ©), [19b]
% = (—)Np~NIRN z [AN% cos M + AL sin MO]PM (cos ), [19c]
XA = =g 2 [chZ*  cos mgp + ¢15" sin mp)P," (cos 6), [19d]
B, = _ gty Z (b1 cos mep + b2 sin m@p P, (cos 6), {19]
P = g z [a,2" cos mp + a2+ sin mp1P,"(cos ), [191)

X = (- pNpNHRN ! 2 [C1 mcos MO+ CIE | ysin MOIPM(cos ©),  [19g]

N
®L¥ == D"PVIRN Y (B mcos M® + BIX, ysin M®IPyM(cos @),  [19h)
M=0

N
PLN = (DMPNRNTT S (AR ycos MO+ A | sin M®]P\M (cos ©), [19i]
M=0
where a)2¥*! pri+l ol are coefficients to be determined.

These coefficients are evaluated by first seeking a recurrance formula, linking the
coefficients of a certain reflection to those of a lower order one. This can be readily achieved by
noting the similarity between the boundary conditions of [17] and [18] and those of our previous
work (with vi5, =V, vize1 =V, Uip =V, and vy =V, Vi =vs, and w5 =v). It is
therefore sufficient to determine the coefficients a,”, B,”, and y,” from the velocity fields v,
and v, 1.y, by using [21] and [22] of Hetsroni & Haber (1970).
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12k _ o+l NEpNM n l2k
Qpm = O ZO A(fEQ F’lm 2(2n+3) —-1.M>» [Zoa]

12k _ n—t - NENM: 2, 2k 1.2k NQ2~-N)2n—1)+q(Nn+1-2n-2N)
nm = & »Z'MZO{B Fom B nB-N- 1t A-N-1.m] 2N@2n-D2N - 1)

+ BN Frimin 1'%_..M}, [20b]
yih= a";_‘,oz{ BNESMANCIRE o+ BV 22 Qa1 e [20c]
where
[ (= 1)V2memeN=M) (n+m+N-M){(n-m+ N+ M)!
(n+m)!(N—M)!2"+N[(n-m + N+ M)21'[(n+m+ N - M)2]!
for(n+m+ N - M)even
FNM=1 0for(n+m+ N - M)odd [21a)
0for|M —m|>(N+M)
0 for M >N,
_(mtm)n+m-=1) (n—min—m—1)
“HimiN-M-1 i-m+N+M-1)’ [21b]
_(Mn+ Nm)(n+m+1)
Q= n+m+N-M ~ 21c]
and
1,2k—1 __ N+l - o n N 1,2k~1
aNu =B n2=0m=oa fNM2(2N+3) a5 m [22a]
Bl ="' S S {ariulath i+ aldt,
n=0 m=0
N2 IN~-D+ANn+1-2N -2 lenm
ComEi s St P o ettt ) a2
7 =" S S {am RN +a” f’;’;‘”aalﬁﬁ‘,,,} (22¢]
n=0m=0
where
(_1)1/2(n+m+N—M) (n+m+N-—M)!(n-—m+N+M)!
(n—=mMN+M2"N(n—m+ N+ M2 [(n+m+ N - M2
flim= for(n+m+ N — M)even [23a]
Ofor(n+m+ N - M)odd,
A= (N+M)(N+M—-l) (N-MYN-M-1) [23b)
(n—m+N+M—1) (ntm+N-M-1)’
(Mn+Nm)(N+M+1) 23
m-m+NTM) (23c]
and where

2
I
~lg
®
i
~l

{24]
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The solution is continued following the scheme we used previously, viz.

2N -1

AR m= m{)\b[(2N+3)a”" "+ (2N + DB+ 28N, [25a]
B!, = m{)\b[(ZN+ Dal?s +@N - DB 1~ 2e 1271, (25b)
e NN NS ) 254
B~ 2(?;: 3’ (25d}
= RN +(1{‘])[(—I\11)—(11;A,:b+)N+2] v (25¢]
Cine = N(N + 1)[(?VN—+1)1)\,, TN 12 YN [25f]
Qi o G—%A—) Mal2n + Il + 2n + DBL2 + 28125, [26a]
b= s TR (@ + Dadit+@n - DB - 202, [26b]
o QD [ ) -
bl = —2(2",;::212), [26d)
citim= n(n +(lr;[(—nli(ll)_}\;\fn +2] Yim: (26el
R el e e L261]
fork=1,2,3....

Thus, the solution of the reflection 2k was expressed in terms of the coeflicients of refiection
2k — 1), and the (2k + Dth reflection was expressed in terms of the coefficients of the reflection
2k.

Obviously, it will suffice to solve the coefficients of the first reflection only, namely v,; and
u,,. This is achieved by defining

Vio= Vo~ Wy,

and then applying [26] with k = 0. This is quite permissible since the boundary conditions of
[11] are similar to [14] for k=0, with the exception that u, subtracted from u,;.

The coefficients a2, B12, and y.%, are determined in an analogous way to the one described
by Hetsroni & Haber (1970), their [17], [19], [20], with «.% = a,.", etc.

A similar solution can be obtained for the flow fields v,, u,, and U,.

Thus, a solution for the flow fields is obtained to any desired accuracy which is determined
by the order of @ and B, for a given v.. Also, the drag forces acting on the droplets is
calculated:
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12641 5 22k+1ys | (A12k+1 , AZ2k+1ng 12k+1 - 22k+1
fpo = dmpea Y, (@l + a2 i+ (@234 + @22+ (al 3 + a2 k], [27a]
<o

Fpp = 4mp.b kZO (ALK + A22%i+ (AL + A224)j+ (A 25+ A2Z4)K]. [27b]

Examples

As a first example we present the solution for the drag forces and terminal settling velocities
of two droplets falling in an unbounded quiescent fluid in a gravitational field. The solution is
carried out to 0(a"B™) where n + m <35.

The velocities of the droplets are expressed by:

U, = ua.xi + uazks [283]
Up = Upi + Up.k, [28b]

and
va=0. [28¢]

From the following vectorial operations we obtain:

t, (Do—u)=1t, - Vig=—[Uy Sin 0 cOS ¢ + U,, cOS 0

= — (Uyy, cOs PPy '(cos 8) + u,,Pi(cos 8))], [29a]

t - VX (vo—u,)=0, [29b]
using [21] and [22] from Hetsroni & Haber (1970):

Bllg =~ Ugz [29C]
BT = — s, [29d]

and all the other coefficients are zero. Substituting [29] into [26] one obtains the coefficient a3,

0. aly, bls, and al3,, b1, all, and b where only a3, and a3, are significant for the
calculation of the drag forces. However, in order to bring the solution to the desired accuracy
and order of (n +m), one must compute higher reflections. Using [25] and [26] up to the sixth
reflection, the desired order is obtained. All higher reflections have no contribution to that
order.

An identical procedure should be followed for solving v,. However, since v, is completely
similar to v, solution for the latter is applicable to the v, field, with ‘b’ replacing ‘a’, A,
replacing A,, U, replacing u, and B8 replacing a, and vice versa.

After some lengthy algebra the following is obtained:

F. Q+3I)2+3N) . Q+3AN2+3A,) s
ompa 2t A = "“2[1 AT+ BT HTT AT A,
A P

CARH3A) 5 (243M)°2+3A0) 5.,
W+ a0+ 1) * Bt e+ ara Ta) P }

_ 2+3Ab I\b 3
I NLAREY L

+ sz[

Aa(243A) Baz_(2+3)\,,)(2+3)«,,)2 2]
22+ 32,01+ Ap) 8(1+ A1+,

= Kﬂl(a* Ba '\aa /\b)uaz + sz(a’ Bs Aav Ab)[Jbz, [30]
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Fyx [1 +(2+3)t,,)(2+3,\,,) (24322 +3A) 5

WA Y 1601+ A (1+ ) B T8+ A1+ 4)

bmuea =

A(2+3)p)
8(1+ A1+ Ap)

k}
Bt 6T AT+ A"

Na(2+3Xy)

24342 +310,) , 32]

_be[ 243N,

Ap 3
rn P T o P TR+ 0+ P2

2+ 302 + 30
64(1 + A )1 + M)

T(2+ 30,2+ 3Ny)

4
A+ )1+ 1) °B

Bza +

L7243\ gy 2F N2+ 3N o ]
6401+ Ay P T 102401 + 0)X0 + No)

= Kax(uw B’ )\as Rb)uax + Kbx((!, B’ Aa’ )\b)be-
Similar solutions are obtained for the drag force acting on droplet b. Thus,

Fbx
2/3+ A,,)

= be(aa B’ Aa, /\b)be + Lax(a» B’ )‘a’ Ab)uaxa
bu eb( 1+ A,

and

sz
2/3+ A,,)

= Lbz(a’ B’ Aa, /\b)sz + Laz(av B7 Aav Ab)uar
omudb(5 3

It is obvious that
be(a7 Bs Aaa /\b) = Kax(ﬁ- a, Ab» Aa)»
Lax(av Bs /\av Ab) = Kbx(B’ a, Ab» Aa),
Lbz(av B, Aa’ Ab) = Kaz(By a, Abv Aa)7 L

and

Laz(a’ ﬂs /\av Ab) = sz(ﬁs a, Abv Aa)~

A very simple relationship exists between K,,, L. and K, L,;, namely

“+
W+ A, Ko, B Ao Ap) = 23+ A BLax(a, B, Mg, Ap),

1+A, T+ A
2-?:—/\? aKp (2, B, As, Ap) = '2%-;—?’ BLu(a, B, Ag, Ap).
Hence
L SOV PWREE oL MR WAL
2{3:/\?" aKp.(a, B, Ay, Ap) = 2{3:/\:"’ BK,.(B, a, Ap, A,).

31]

(32

(33

(34]

(35]

(36]

Equations [35] can be proved by substitution into [30] and {31]. A general proof to any order of

accuracy of the K's is presented in appendix A.
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These solutions contain as special case the solution for rigid spheres moving in an
unbounded gravitational velocity field presented in Happel & Brenner (1965).
In order to obtain the velocities of the droplets, simple force balance is used since:

4 3+ A,
Fea=3 7a’Ap,g = 67meaU0a£1/T )
and [371
4 213+A
Fo = 3 Wb}APbg =6mubU 1/+ Abb ,

where Uy, and Uy, are the terminal settling velocities of drop a and b, respectively, suspended
in an unbounded quiescent gravitational field, then:
Kazuaz + szsz = UOa : k,
Lazuaz + Lszbz = UOb * k,
(38]
Kaxuax + Kbebx = UOa ° iv

Laxuax + be be = U0b - 1.
The solution of [38] yields:

U, = uaxi +u k= [kazkk + kax(l - kk)] : U()l + [kbzk-k + kbx(l - k-k)] * Uga,
U, = bei + szk = [lazkk + (I~ kk)] * Ugy + [lp Kk + Lo, (I - kk)] - Ug,

where
Lbz sz
ka == k z = T T
<74, b A,
Laz . _ Kaz
lah__Xz_s lb:—Azs

Az = Kaszz - szLaz~

and k,x Kbx, lox lpx are obtained similarly by interchanging the subscript z by x.

Example 2

In the second example we present the solution for the drag force acting on two drops
submerged in a Couette flow field.

The undisturbed velocity field is v. = GXk (figure 1).

Since v%= GK[X]* = Gk(a sin 8 cos ¢ — I,) and v2* = GK[X]** = Gk(b sin @ cos ® — ),

H?:)m =—p*t, +uG(ksin 8 cos ¢ +icos 8),
H?;.L = — p¥*tg + nG(k sin O cos ® +icos B).
The boundary conditions for v, and v, are similar. We therefore limit ourselved to the solution

of vi, u; and U, and the solution for v,, u, and U, is easily obtained by interchanging I, with /,, a

with b and A, with A, and vice versa. Further simplification can be achieved by dividing v.. into
two terms:

Ve = — Gl,k+ Grsin 0 cos ¢k = vi+ v..
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Figure 1.

A solution for the first term v. has already been obtained in example 1 where one has to
interchange in [31] u, with Gl, and U, with Gl,. The second term is a new one and the solution
for the drag force is presented as follows:

From the following vectorial operations, we obtain:

=Grsin@cosfcos ¢ = 1/3Ga( )Pz (cos 8) cos ¢,
r-Vxvi=—Grsin@sin ¢ = - Ga( )P, {cos 8) sin ¢.

Using [21] and [22] from Hetsroni & Haber (1970): i) =1/3Ga, #i{=— Ga. To obtain a
solution of 0(a"B™) where n + m <7 the following coeflicients were calculated (five reflections

are needed):
: [R] 1,1 1,1 1.1 i.1 11 1,1 1.1 1,1 1,1
Ist reflection—aly,, b3, aig, Blo. Y10 a2, B, ¥21, @30, Bio. @3, B33,
1.2 12 12 12 12 12 pi2
2nd reﬂeCthﬂ‘—A 20, AL, B33, B3 230, C4,, A—4o, A-429 B, BA42, al o,ﬁn 0> Y1.0, 21,1, P1.1»
3rd reflection—a'3,, a3, B3,

4th reflection—A'3,, 13,

5th reflection—al3,.
The drag force acting on the drops is calculated by [27]

f[l)a = 4077}1,9{(01'3_0 + a‘.;o)k + al%]i} + O(Gnﬁm)(" + ’") > 7.

Fhy= 4mwbp (A% 0+ Ak + 0a"B™)(m + n)> 7.

By interchanging a, a, A, with b, B, A, and vice versa, £2,, and F3, are obtained. Hence the total
drag force acting on a drop a is as follows:

Ad24+30)2+30) . 5 3 A2+ 34,02+ 5A,)
o = —-4 EG 2[ 4 - 293 a a
fo { L R TSR ETRS W 16(1 + A,)2(1 + Ap)
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A2 +3A,)
16(1+ A,)%(1+ Ap)

S H+30)Q2 +5A,)6+37A,)
384(1 + A, (1 + 7A5)

a6B aZB

2 Aa(2 431,022+ 34,)
256(1+ A.)X(1+ A,)

g’ Aa(172Ap) + 104, + 64, + 4)
16(1+ A Y (1+ Ap)

s A (24 34)(2+340)(2 + 5A,)
256(1+ A,)°(1 + Ap)?

Ao(243A,)(2+34,)°
64(1 + 2,)%(1 + Ap)?

a’B

Ap(2+3A,)
41+ A1+ Ap)

2 AL243A)(2+34,)(2+ 5Ab)]}
64(1+ A1 + Ap)?

+a’g ] + 47rp.eGab[ B*
Aa(2+5A4)

41+ A,)(1+ Ap)

a232 + Bsa a’B

+ {5 e Ga? ((L:AA”:)((ZI:S):“)) 35a2}i +0(a"B™)(m +n)>1.
and a similar expression is obtained for Fp.

The result is interesting since a drag force was obtained in the i direction. This force causes
the drops to migrate along their line of centers perpendicular to the direction of v.. The
direction of the motion depends on the sign of G and the magnitude of A, and A, (smaller or
greater than unity).

No such component of the drag force is obtained from the solution of v.. The magnitude of
that velocity depends mainly on the radii of the drops, the distance between their centers and
the shear intensity. It is well understood that when the drops come closer the first term above
cannot explain the whole phenomenon. More reflections, or even an exact solution are needed.

4. SUMMARY

Two solutions are presented in the paper. One for the problem of two drops of different size
and viscosity moving in an arbitrary unbounded field along their line of centers, and the other
for two drops moving perpendicular to their line of centers. The reflection method is used and
recursive formulae obtained which lead to solutions for the flow fields to any desired accuracy.

As special cases, approximations for the drag force, to the order of (a/l)™(b/!)" (when
m + n < 5), and to the settling velocities are obtained for two drops moving in a quiescent
gravitational unbounded field, and in Couette flow.

The coefficients K, and K,,, defined in [30], are the coefficients for the drag force acting on
drop a induced by the motion of drops a and b, respectively, in the z direction (problem I).

The coefficients K,, and K,,, defined in [31], are the coefficients for the drag force acting on
the drop a induced by the motion of drops a and b, respectively, in the x direction (problem II).

The drag force coefficients K,,, K,, are plotted in figures 2 to 5 and compared with the exact

2:2 T —T T T

Kaz A=0

—=— Kgz

Figure 2. K, and K, are the respective approximate [30] and exact (Haber et al. 1974) coefficients of the
drag force acting on drop a induced by the motion of drop a in the z direction. (A = 0, air bubbles in water).
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Figure 3. K,. and K, are the respective approximate [30] and exact (Haber ef al. 1974) coefficients of the
drag force acting on drop a induced by the motion of drop b in the z direction. (A = 0, air bubbles in water).

3:0r- T T Rl T

Figure 4. K,.and K. are the respective approximate [30] and exact (Haber er al. 1974) coefficients of the drag
force acting on drop a induced by the motion of drop a in the z direction. (A = 67, water drops in air).

drag coefficients K, and K}, obtained by Haber et al. (1974). Two cases are plotted: A =0
(approximating air bubbles in water) and A = 67 (approximating water drops in air). The results
obtained by the method of reflection are good for the A =0 and become worse as A increases.
For a + B close to unity (two drops close to each other) the method of reflection fails entirely.
Instead of increasing to infinity the coefficients K,. and K. are limited constants of order of
magnitude 1. The method of reflection yields accurate results for a + 8 <0.5.

Exact drag force coefficients for two drops moving perpendicular to their line of centers are
yet unknown and the results obtained for K,, and K,, (see figures 6 and 7) can be compared
only with the ones obtained by Happel & Brenner (1965) for the solid spheres. The results
plotted for A = 67 were compared with the drag coefficients obtained for A = and the results
obtained by Happel & Brenner (1965). No differences of any significance were observed.

Other interesting results are that the coefficients K, and K,, are larger than K, and K,,,
respectively, (for the same a, B8, and A) as well as the expected result that all the coefficients
grow monotonically as A increases.
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24

2:0-

1 | 1

1

%

06
B

0-8

1-0

Figure 5. K,, and K, are the respective approximate [30] and exact (Haber et al. 1974) coefficients of the
drag force acting on drop a induced by the motion of drop b in the > direction (A = 67, water drops in air).

T T T T T T T
A=0
T ———)e67 © > )
) >
5 2L A ' L
212 S .
7 -~
% - ~ 50t
- e - 0% 0’0.3 L= g
P — 20|
- —
1-0 == e T 1 I i
0 02 04 06 08 I-0

Figure 6. K_, is the approximate coefficient [31] of the drag force acting on drop a induced by the motion

of drop a in the x direction.

- Kpx

A=0

Figure 7. K,, is the approximate coe

flicient [31] of the drag force acting on drop a induced by the motion

of drop b in the x direction.



16 G. HETSRONI and S. HABER

REFERENCES

BarcueLor, G. K. 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 41,
545-570.

BatcHELOR, G. K. & Green J. T. 1972a The hydrodynamic interaction of two small freely
moving spheres in a linear flow field. J. Fluid Mech. 56, 375-400.

BATCHELOR, G. K. & GREEN, J. F. 1972b The determination of a bulk stress in a suspension of
spherical particles to order ¢*. J. Fluid Mech. 56, 401-427.

BrenNER, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface.
Chem. Engng Sci. 16, 242-251.

Brenner, H. & O’NEiLL, M. E. 1972 On the Stokes resistance of a multiparticle systems in a
linear shear field. Chem. Engng Sci. 27. 1421-1439.

Goupman, A, J., Cox, R. G. & BRENNER, H. 1966 The slow motion of two identical arbitrary
oriented spheres through a viscous fluid. Chem. Engng Sci. 21, 1151-1170.

HABER, S. & HETsroN, G. 1971 The dynamics of a deformable drop suspended in an unbounded
Stokes flow. J. Fluid Mech. 49, 257-277.

HABER, S., HETSRoNI, G. & SoLan, A. 1974 Low Reynolds number motion of two droplets. Int. J.
Multiphase Flow 1, 57-71.

HarpEL, J. & BRENNER, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall,
Englewood Cliffs, New Jersey.

Hersront, G. & Haser, S. 1970 The flow field in and around a droplet or bubble submerged in an
unbounded arbitrary velocity field. Rheo. Acta, 9, 488-496.

HETsroNI, G., HABER, S. & WACHOLDER, E. 1970 The flow fields in and around a droplet moving
axially within a tube. J. Fluid Mech. 41, 689-705.

LN, G. T., Leg, K. J. & SATHER, N. F. 1970 Slow motion of two spheres in a linear shear field. J.
Fluid Mech. 43, 35-47.

NIR, A. & ACRIvos, A. 1973 On the creeping motion of two arbitrary sized touching spheres in
a linear shear field. J. Fluid Mech. 59, 209-223.

O'NeL, M. E. & Maumpar, S. R. 1970 Asymmetrical slow viscous motions caused by
translation or rotation of two spheres. Part I. The determination of exact solutions for any
values of the ratio radii and separation parameters. Z, Angew. Math. Phys. 21, 164-179.

StimsoN, M. & JEFFERY, G. B. 1926 The motion of two spheres in viscous fiuid. Proc. R. Soc.
Alll, 110.

APPENDIX A

Assume a system of two rigid spheres moving in an unbounded quiescent fluid.

We shall describe two different problems.

(I) A sphere of radius a is moving at velocity u, while the sphere of radius b is at rest. The velocity field and the
stress field generated are u, and m,, respectively.

(I1) A sphere of radius b is moving at velocity U, while the sphere of radius a is at rest. The velocity field and the
stress fields generated are u, and mr,, respectively.

Using the reciprocal theorem one obtains:

ju,-n2~ds=fu2-7r_-ds, [Al}
s s

where S is a surface which contains any arbitrary closed volume. Assume that S consists of three different surfaces: ..
which is a surface of a sphere with a very large radius r and which contains the two spheres; S, and S,, which are the
surfaces of spheres a and b, respectively. Since u, and u, decrease asymptotically with r ', 7, and 7, with r™2, ds with r*
and u, - 7, ds and u, - 7 - ds with ™', the integrals [Al] on the surface S, are negligible. Since u;,=w, on S,, and u, =0
on S,, and since w,=U, on S, and u, =0 on §,, one obtains:

ua~J' 1r2-ds=U,,,‘J' @, - ds. [A2]
S, Sp

a

But

I w,-ds=F, %,
S,

a
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f - ds=F,,
Sp

where F,'*' is the drag force acting on sphere a induced by the motion of sphere b moving at the velocity U, and similarly
for F,'“. Hence

u, -F,*'=U, F,". [A3]

F,® and F,' can be written in the following general form:

F* =6wp,aK, - U,,,} (Ad]
F,* = 6mpbK, -u,
where K, and K, are second rank tensors.
Substituting [A4] in [A3]:
av, K, -U,=bU, - K, -u,.
But
Uy K, =0, (0, K, )=u, K, U,
Hence,
au, K, U, =bu,-K,-U,
and since u, and U, were arbitrarily chosen
aK, = bK,". [AS]
But K, and K, are expressed in the (x, y, z) coordinate system as follows:
L, 0 0 K, 0 0
K,=¢0 L, 0} K=<0 K 0
0 0 L, 0 0 K,
But, since K, = K,, and L,, =L, then
bl 6
For two droplets [A3] is valid and [A4] becomes:
F,* =6mu,a 21/::‘;2" K, U,
F,“' = 6mp,b 21/ i ";:” K, U,
which yields at last:
T e
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